
www.manaraa.com

Montpellier Academy

University of Montpellier II
Computer science department

Master Thesis in Computer
Science

Conducted at The Montpellier Laboratory of Informatics,
Robotics, and Micro-electronics

specialty : Unified Research and Professional in Informatics

Exception Handling from requirement

specification to implementation :

Extending UML

by Akram AJOULI

Defence on : June 22, 2010

supervisors :

Christophe Dony

Clementine Nebut

Chouki Tibermacine

www.manaraa.com

Preface
This report is the result of a master thesis research training prepared at
The LIRMM(The Montpellier Laboratory of Informatics, Robotics, and
Micro-electronics) in The Informatics department .This master thesis is

also the last part of my Master of Science degree at University of
Montpellier 2.

The Montpellier Laboratory of Informatics, Robotics, and
Micro-electronics (LIRMM in French) is a cross-faculty research entity of

the University of Montpellier 2 (UM2) and the National Center for
Scientific Research (CNRS).

The Informatics department covers topics that range from the leading edge
of modern mathematics to applied research: graph algorithms,

bioinformatics, cryptography, networks, databases and information systems
(data integration, data mining, coherency maintenance), software

engineering (programming languages, objects, components, models),
artificial intelligence (learning, constraints, knowledge representation,
multi-agent systems), human-machine interaction (natural language,

visualization, Web semantics and e-learning).

I would like to thank the following persons: Mr.Christophe DONY,
Miss.Clementine NEBUT and Mr.Chouki TIBERMACINE for being my

supervisors at LIRMM. Also thanks to Miss.Madalina CROITORU,
Mr.Rodolphe GIROUDEAU and Mr. Abdelkader GOUAICH as being part

of jury members.

2

www.manaraa.com

Abstract

Exception handling is frequently considered as the final task to
achieve when developing programs. However dependable systems need
from their stakeholder to predict all exceptional situations, because
any non-considered exceptional behavior potentially makes great dam-
ages. In our approach we have made an extension to UML2.0 which
makes it possible to consider exception handling during applications
modeling phase of the software life cycle . Our approach makes also op-
portunity to integrate the exception handling system explicitly in Use
case, sequence diagrams allowing developer generating the last one,
the class diagram and the aimed programming language code auto-
matically with some needed refinements. Those automatic generations
adapt the exception handling system specifically to each phase making
some kind of communication between all phases of software life cycle.
This can control any changes made on exceptional handling system
by reflecting them on all phases of development. We have proceed to
build our approach with defining a new UML2.0 extension profile and
we have used model driven engineering to automatize diagrams and
code generation making possible to specify exception handling and au-
tomate its passage from one phase to an other along the software life
cycle.

3

www.manaraa.com

Contents

1 Introduction 6

2 Background 8
2.1 Exception handling Overview 8
2.2 An overview of the used UML diagrams 10

3 State of the art 11
3.1 Classifying exceptions according to software lifecycle 11
3.2 Exception handling in requirement specification 11

3.2.1 Exceptional use case 11
3.2.2 Misuse Cases . 13

3.3 Exception Handling in sequence diagram 13
3.4 Modeling exception handling by extending modeling languages

and extending aspect oriented language 15
3.5 UML and exception handling: 15

3.5.1 Existence of exception handling in Activity diagram . 15
3.5.2 Exceptions in UML classes 16

4 Proposed exception handling model and UML extensions 17
4.1 The proposed UML Profile 17
4.2 Proposed Modeling Process 17

4.2.1 Step1: Defining use case diagram and discovering ex-
ceptional use case . 17

4.2.2 Step2: Defining interactions in each sequence diagram 20
4.2.3 Step3: Making exceptional replies in sequence diagrams 20
4.2.4 Step4: Defining handlers in sequence diagrams 23
4.2.5 Step5: defining class diagram 36
4.2.6 Step6: Implementing code 38

5 Implementation of the Proposed approach 39
5.1 Model-driven engineering . 39
5.2 Used Tools . 40

5.2.1 Kermeta . 40
5.2.2 Eclipse UML2 plugin 41

5.3 The Tool’s Architecture . 41

6 Conclusion and perspectives 51

4

www.manaraa.com

List of Figures

1 The call Stack . 9
2 Searching the call stack for the exception handler 10
3 Exceptional Use Cases (extracted from [2]) 12
4 Misuse Cases Approach (extracted from [12]) 13
5 Normal scenario of withdrawal (extracted from [8]) 14
6 Applying Time exception (extracted from [8]) 14
7 The UML 2.0 Exception Handling Notation (extracted from

[UML Superstructure]) . 15
8 The URL viewer example (extracted from [UML Superstruc-

ture]) . 16
9 Exception Handling Profile 18
10 Process of our approach . 19
11 Example of use case diagram after applying new stereotypes. 21
12 The travel agency use case diagram after applying the pro-

posed stereotypes . 22
13 Example of sequence diagram after applying Exception stereo-

type . 23
14 Use of Handler Stereotype 24
15 Graphic notation of Termination stereotype 26
16 Application of termination handling mode 27
17 Graphic notation of Resume stereotype 28
18 Application of resume handling mode 29
19 Graphic notation of Retry stereotype 30
20 Application of retry handling mode 31
21 Application of resignaling handling mode 33
22 Graphic notation of ReturnValue stereotype 34
23 Application of return handling mode 34
24 Graphic notation of AbortAll stereotype 35
25 Application of abortAll handling mode 36
26 Main tasks of our proposed tool 42
27 Main subtasks of task.1 . 45
28 Main subtasks of task.2 . 46

5

www.manaraa.com

1 Introduction

Since the failure of Flight 501[14] which is the first test flight of the Euro-
pean Ariane 5 on June 4, 1996, developers and stakeholders have been found
obliged to put a great mark on exceptions and programs errors. Because
when we hear that an integer overflow or an arithmetic overflow caused a
loss of more than 370 million Us-dollar we must think about it seriously
and we should ask if the developer of the software integrated on the plan
we will ride,has made a consistent exception handling system. Exception
handling is very important specially when we talk about dependent sys-
tems because many disasters were caused by non handled or non predicted
exceptions. Designers, developers and software stakeholders should model
exception handling system early when developing a software, because think-
ing about software exception on the last phase of software developing they
will be found under pressure because they must focus on the normal and
the exceptional behavior of the application in the same time, so any ignored
exception may cause great disaster.

Exception handling has been always related to the implementation phase
when developing softwares. Despite many programming languages support
exception handling, developers have always found many problems in making
a consistent exception handling system in the same time of implementing
a software. In addition when we talk about dependent systems or critical
embedded systems such as planes, we must be sure that thinking about ex-
ception handling in the last minute will be harmful and could cause damages
to human lives if a developer forget to make a handler for an exception.
The objective of this master thesis is to study the exception handling system
from the requirements specification phase to the final phase when develop-
ing a software. This study is based on extending UML by a profile which
allows the designer and even the developer modeling the aimed exception
handling system on the earliest phases of developing and then receiving au-
tomatically the traces of this system on the application code according to
the target programming language.
This master thesis aims the following issues:

• Defining a UML profile in order to support exception handling system
along all the software life cycle,

• Generating semi automatically the sequence diagrams from use case
diagram,

• Generating automatically class diagrams,

• Generating application code,

6

www.manaraa.com

• Moving automatically the exception handling system when passing
from a diagram to an other until arriving to the generated code,

• Controlling any changes made on the exception handling system at
any software life cycle phase and applying them to other phases,

• Specifying constraints that are based on matching the exception han-
dling system to the programming language features in the phase of
code generation.

Some propositions have been found on integrating exceptions handling
along software life cycle, each of those studies was occupied by integrating
exception handling notion on a one part of software life cycle and not on
other phases.
Our vision to exception handling was more global because it covers all soft-
ware development phases by exception handling notion. In addition our
work offers many benefits to developers and designers by giving them op-
portunity to generate semi-automatically sequence diagrams with exceptions
specified on use case diagram and full-automatically class diagrams and soft-
ware code.
The rest of this document is structured as follows. Section 2 gives Back-
ground informations on exception handling and Unified Modeling Language
(UML). Section 3 presents existing and related works. Section 4 describes
our approach. Section 5 presents the implementation of our approach. Sec-
tion 6 concludes and gives some perspectives.

7

www.manaraa.com

2 Background

We will present in this section some backgrounds to the reader in order to
put him in the right context. First, we give an idea about exception han-
dling, then we present some UML diagrams which will be concerned by our
approach.

2.1 Exception handling Overview

Exception handling is a programming language construct or computer hard-
ware mechanism designed to handle the occurrence of exceptions, special
conditions that change the normal flow of program execution.
Exception handling is the process of:

• Examining an exception message which has been issued as a result of
a run-time error

• Optionally modifying the exception to show that it has been received
(that is, handled)

• Optionally recovering from the exception by passing the exception
information to a piece of code to take any necessary actions.

Exception definition: An exception is an event, which occurs during
the execution of a program, that disrupts the normal flow of the program’s
instructions.
When an error occurs within a method, the method creates an object and
hands it off to the runtime system. The object, called an exception object,
contains information about the error, including its type and the state of
the program when the error occurred. Creating an exception object and
handing it to the runtime system is called throwing an exception.

Advantages of Exceptions: Using exceptions in programs has many
advantages such as :

• Separating Error-Handling Code from ”Regular” Code

• Propagating Errors Up the Call Stack

• Grouping and Differentiating Error Types

Exception handling mechanism After a method throws an excep-
tion, the runtime system attempts to find something to handle it. The set of
possible ”somethings” to handle the exception is the ordered list of methods
that had been called to get to the method where the error occurred. The

8

www.manaraa.com

list of methods is known as the call stack (see figure.1) 1.

Figure 1: The call Stack

The runtime system searches the call stack for a method that contains
a block of code that can handle the exception(see figure.2)1. This block of
code is called an exception handler. The search begins with the method in
which the error occurred and proceeds through the call stack in the reverse
order in which the methods were called. When an appropriate handler is
found, the runtime system passes the exception to the handler. An excep-
tion handler is considered appropriate if the type of the exception object
thrown matches the type that can be handled by the handler.
The exception handler chosen is said to catch the exception. If the run-
time system exhaustively searches all the methods on the call stack without
finding an appropriate exception handler, as shown in the next figure, the
runtime system (and, consequently, the program) terminates.

1Extracted from Sun Developer Network Site.

9

www.manaraa.com

Figure 2: Searching the call stack for the exception handler

2.2 An overview of the used UML diagrams

UML includes a set of graphical notation techniques to create visual models
of software-intensive systems. We will present in the following only the UML
diagrams which we will use in our proposed approach.

Use case diagram A UML use case diagram is a type of behavioral
diagram defined by and created from a Use-case analysis. It defines the
system frontiers with the actors that interact with the system and it defines
in the outside the set of the system functionalities structured by use case
which are eventually related to each other with inclusion, extension or gen-
eralization.
The main purpose of a use case diagram is to show what system functions
are offered to actor. Roles of the actors in the system can be depicted.

Sequence diagram A UML sequence diagram is a kind of interaction
diagram that shows the dynamic side of the system.

Class diagram A UML class diagram represents the static structure
that describes the structure of a system by showing the system’s classes,
their features, and the relationships between the classes.

10

www.manaraa.com

3 State of the art

While a large part of the exception handling research community has worked
on exception handling mechanism at code level, a small part of them has
tackled more globally how exceptions should be dealt with all over the soft-
ware life cycle. We present these existent works in the following subsections.

3.1 Classifying exceptions according to software lifecycle

Romanovsky et al.[6][13] classify exceptions into three levels: exceptions
related to application, exceptions related to design and exceptions related
to implementation. In each phase of a software life cycle, developers should
discover its related exceptions and define right handlers. Handlers defined
in each phase should handle exceptions related to the same phase and those
related to previous phases. This work was done to resolve the problem
of loosing the exception raising context, it aims to define exceptions and
handlers in the context in which errors occur.

3.2 Exception handling in requirement specification

3.2.1 Exceptional use case

Kienzel et al. [2] have presented exceptional use case. Their idea consists
on extending the UML in order to adapt use case to exceptional behaviors.
Extensions affect the use case itself by presenting a new approach of use case
which consists on defining a use case as a handler. So, we can find normal
or standard use case and exceptional use case. The figure.3 represents a
use case diagram made for an elevator system [2]. We see in this diagram
the use cases stereotyped as handlers in order to distinguish them from
normal use cases, we see also comments stereotyped as Exception in order
to show the name of the exception associated with a given use case, we can
see also links stereotyped as interrupt and continue, others are stereotyped
as interrupt and fail. These two last stereotypes are defined to express in
the use case diagram the model of exception handling model such as resume
and termination. Kienzel et al. also tackled the problem of exceptions
and handlers documentation. Further works [3][4][5] propose a tool which
simulates the safety and reliability of a dependent system using use cases
refinements. This tool allows developers to simulate the reliability of a
dependent system by proceeding iteratively and discovering exceptions until
getting the demanded level of reliability and safety.

11

www.manaraa.com

Figure 3: Exceptional Use Cases (extracted from [2])

12

www.manaraa.com

3.2.2 Misuse Cases

Alexander Ian [12] proposes a new kind of use cases called Misuse cases. A
misuse case is a use case that focuses on non-functional requirements.

In [12] a scenario is a sequence of actions leading to a Goal desired by a
person or organization. On the other hand, a negative scenario or a misuse
case is a scenario whose Goal is desired not to occur by the organization in
question and desired by a hostile agent (not necessarily human)

Figure 4: Misuse Cases Approach (extracted from [12])

Figure.4, extracted from [12], shows a Driver that participates as an ac-
tor in the use case (control the car). The weather is an other actor, but not
an ordinary one because it participates in a misuse case (make car skid),
that threatens the normal use case and results two exceptions represented
by two use cases (control traction and control Braking with ABS).

3.3 Exception Handling in sequence diagram

Oddleif Halvorsen et al. [8] present the notion of time exceptions in sequence
diagrams. The authors point out that the UML does not explicitly describe
time exceptions, they augmented the UML by showing in sequence diagrams
exceptions triggered by the violation of time constraints. They give also a
formal definition of time exception in sequence diagrams. In order to explain
their approach they used an ATM example.

Figure.5 describes the normal scenario of a normal withdrawal sequence
diagram. The user is expected to insert the card and put four digit numbers,
then while the ATM verifies with the bank if the code entered is correct, it

13

www.manaraa.com

Figure 5: Normal scenario of withdrawal (extracted from [8])

asks the user to enter the value of demanded amount, finally the user gets
the amount. Figure.6 describes an exceptional scenario for a withdraw and
how time exception was applied to sequence diagram. Because in ATM there
is constraint on time reserved to enter the four digit, so, if time is over and
the four digit are not received by the ATM, there will be a time exception
triggering which must be handled. In order to put the user card in a safe
place, supposing that user left the ATM and forgot his card, and in order to
serve the next user by canceling the previous service, those details can be
clearly seen in the figure.6. In this figure UserLeftCard sequence diagram
represents the handler of time exception UserLeftCard.

Figure 6: Applying Time exception (extracted from [8])

14

www.manaraa.com

3.4 Modeling exception handling by extending modeling lan-
guages and extending aspect oriented language

Alessandro Garcia et al. [9] present the problem of absence of explicit specifi-
cation of exception handling both in modeling languages and in development
environments.
Their approach is oriented to model driven software development (MDSD).
They started by demonstrating that even we could express exception han-
dling in the state machine diagram it will be very complex and it is better
to make a separate model for exception handling.

3.5 UML and exception handling:

UML does not fully describe exception handling: exceptions are mentioned
for activity diagram and in method specification.

3.5.1 Existence of exception handling in Activity diagram

The try block can be modelled by a protected node in an activity diagram.
The catch block is called the handler body (see figure.7). If an exception
occurs, the set of handlers is examined for a possible match . If a match is
found, the handler body is invoked and the handler catches the exception.
If the exception is not caught, the exception is propagated to the enclosing
protected node if one exists.(see figure.7)

Figure 7: The UML 2.0 Exception Handling Notation (extracted from [UML
Superstructure])

Let us look at the following example given in [16] to understand the no-
tation of exception handling in the activity diagram.(see figure.8)
Consider a simple URL viewer that prompts the user for a URL and then
copies the contents to the display. The logic for this activity is to open a
new URL, open the display, copy the contents of the URL to the display,
and then close the streams for the URL and the Display. In the sunny day
case, we simply display the contents of a resource.

15

www.manaraa.com

Figure 8: The URL viewer example (extracted from [UML Superstructure])

During the course of this logic, two possible exceptions may result. The
first is a MalformedURLException. This exception could be detected when
we open the URL. The second is an IOException that could happen in
several places. The URL might be valid but the object that it locates is
unreadable. The display may not be accessible.
In the model of this system, there are four activities. Three of these activ-
ities are nested in a protected node. In UML 2.0, we are allowed to nest
activities. There are two handler bodies; one for the MalformedURLExcep-
tion and one for the IOException. Successors to the handler bodies are the
same as the successors to the protected node. We could, therefore, look at
the activity which closes the URL and the Display as our ”finally” clause.

3.5.2 Exceptions in UML classes

In the specification of behavior features made by OMG, exceptions can be
associated to behavior features such as operations which could raise these
exceptions.

Even UML offer a small supporting of exception handling, it does not
permit to model it and to show it explicitly in the most important diagrams
of softwares life cycle such as use case diagrams, sequence diagrams and
class diagrams.

16

www.manaraa.com

4 Proposed exception handling model and UML
extensions

The study of the literature concerning exception handling in early design
phases led us to propose our approach materialized by a UML profile, to led
the designer consider exceptions from refinement analysis to implementation.

4.1 The proposed UML Profile

According to [7] a profile in the Unified Modeling Language (UML) provides
a generic extension mechanism for customizing UML models for particular
domains and platforms. Extension mechanisms allow refining standard se-
mantics in strictly additive manner, so that they can not contradict standard
semantics.

Profiles are defined using stereotypes, tag definitions, and constraints
that are applied to specific model elements, such as Classes, Attributes, Op-
erations, and Activities. A Profile is a collection of such extensions that
collectively customize UML for a particular domain (e.g., aerospace, health-
care, financial) or platform (J2EE, .NET).
In order, to adapt UML to our approach we have defined a profile which
contains many stereotypes that extend the UML meta classes to be able to
show explicitly exception handling notations in the aimed locations. In the
following we will present firstly the whole profile, then we will describe each
stereotype separately.
Figure.9 shows the proposed profile. The description of this profile and its
defined stereotypes will be presented in the following two sections.

4.2 Proposed Modeling Process

Our approach is based on seven main steps(see figure.10) which will be
described in the following:

4.2.1 Step1: Defining use case diagram and discovering excep-
tional use case

In this step the designer has to define the use case diagram of the target
application, then he should look for the use case in which there could be
raised Exceptions. Then he has to extract the set of exceptions that could
be raised with each exceptional use case. To distinguish graphically normal
use case and exceptional use cases we propose an extension to UML in order
to support notating exceptions in the use case diagram.
This step is very important, because as you now use case diagrams are made
to define requirements when developing softwares. With the standard UML,

17

www.manaraa.com

Figure 9: Exception Handling Profile

designers could only define normal use case or normal behavior, but we see
that a use case diagram will be more useful if it includes also an explicit or a
graphic notation that permits to separate normal behavior from exceptional
behavior.
This step could be iterative, and it is more efficient if it will be, because in
dependent systems there is not only one person who is occupied by defining
requirements, but there are stakeholders also, and the set of requirements
must be verified times and times before passing to other software life cycles
phases, therefore designers could discover new exceptions each time there
is a requirement verification. The exception notations in use case diagrams
are now possible with our proposed extension to UML.

18

www.manaraa.com

Figure 10: Process of our approach

UML extension and proposed stereotypes for use case diagrams
We will present in the following each stereotype separately:

i) WithExceptions stereotype This stereotype extends the meta class
Use Case. Therefore it is defined to be applied to use cases. Its application
to a use case indicates that this one contains exceptions. This characteristic
gives to the designer the opportunity to distinguish between normal behav-
ior and exceptional behavior explicitly on the use case diagram.
This stereotype is also necessary for implementing our approach because it
permits performing use cases classification. Applying this stereotype to use
cases which contain exceptions will give an identification attached to those
exceptional use cases in order to distinguish them from normal use cases.
The use case diagram will so show explicitly two behaviors: one normal

19

www.manaraa.com

and other exceptional. This is very important, specially when developing
dependent systems, because designers and stakeholders will be more aware
to exceptional use cases in order to avoid the worst.

This stereotype is to be applied to use case diagram. Figure.11 shows
how an use case that contains exceptions looks like when we apply this
stereotype.

ii) AssociatedExceptions stereotype This stereotype extends the
meta class Comment, so it is defined to be applied to comments. It is used
to show the set of exceptions associated to an exceptional use case. The
designer can introduce the names of associated exceptions in the body of
the comment stereotyped by �AssociatedExceptions� in order to give to
this comment the specificity that allows the designer to extract carefully the
set of exceptions that can be raised in the scenarios of an exceptional use
case stereotyped by � WithExceptions � .
The figure.11 shows an example of a comment stereotyped by � Associat-
tedExceptions � and How use case diagram looks like with the application
of this stereotype.
The other example is the example of the travel agency. In this example
there are three main actors: the client, the broker and the provider. Each
of these actors is concerned with many tasks. The figure.12 shows the use
case diagram of the travel agency case study after applying our proposed
UML extensions. The use case diagram shown by figure.12 demonstrates
that with our proposed profile the designer can easily distinguish between
normal behavior and exceptional behavior.

4.2.2 Step2: Defining interactions in each sequence diagram

A sequence diagram represents the set of interactions that describe a part
of a use case. That is why the designer is demanded to define the necessary
interactions that describe the use cases scenarios. The designer could do
this work easier if he finds sequence diagrams skeletons already generated
from the use case diagram. in this case, he will be asked just to complete
the generated sequence diagrams skeletons.

4.2.3 Step3: Making exceptional replies in sequence diagrams

We mentioned in the description of the step1 that there are in the use case
diagram exceptional use cases and normal use cases. So, each sequence dia-

20

www.manaraa.com

Figure 11: Example of use case diagram after applying new stereotypes.

gram that describes an exceptional use case will contain the set of exceptions
that are associated to this use case. those exceptions are included in the
sequence diagram as comments which will notate exceptional replies. A mes-
sage which represents a response in the sequence diagram is a reply. So, we
will find in the sequence diagram exceptional replies annotated by comments
representing exceptions and normal replies. Therefore, a message which rep-
resents a method invocation will invoke two responses if the method could
raise an exception. The relation between these two responses is exclusive,
it means that either there will be a normal response or an exceptional reply
that represents an exception raising.

UML extension and proposed stereotypes for sequence diagrams
to express exceptions

Exception stereotype This stereotype extends the meta class Com-
ment . It is defined in order to be applied to a comment that indicates in
the sequence diagram that a message which is annotated by this comment
represents an exception. Its use is very important in the sequence diagram
because it provides a real and explicit view for the designer to distinguish
between Normal interactions and exceptional interactions.
As each use case will be described by one or more sequence diagram, in
the case of an exceptional use case we will find in the sequence diagram its
describing interactions inheriting its associated exceptions included in the
comment stereotyped by � AssociatedExceptions � . So, each comment

21

www.manaraa.com

Figure 12: The travel agency use case diagram after applying the proposed
stereotypes

stereotyped by � Exception � and owned by the sequence diagram will
contain an exception name from associated exception. We think that some-
times images are more expressive than words . We invite you to see figure.13
to understand the whole story of the stereotype � Exception � .
Figure.13 shows an example of a comment stereotyped by � Exception�
and How sequence diagram looks like with the application of this stereotype.
In this figure we present the example of sequence diagram that describes part
of interactions between a user and a printer. After a request made by a user
to print n pages, the printer will either reply with a normal response or an
exceptional response. In the first case, it will satisfy the request of the user,
in the second case it will raise an exception if there is not enough paper. You
should note that relation between normal response and exceptional response
is exclusive, it means that one of them will exclude the other according to
the kind of the reply. You should note also that here we present only the
utility of exception stereotype and we will present how to handle exceptions
in sequence diagram in the subsection of handler specification.

22

www.manaraa.com

Figure 13: Example of sequence diagram after applying Exception stereo-
type

4.2.4 Step4: Defining handlers in sequence diagrams

After notating exceptional replies in the sequence diagram, the designer has
to look for how defining handlers to the specified exceptions. To do this,
the designer must make a handler to each exceptional reply. You should
note that our proposed extensions to UML provide for the designer graphic
notations to define handlers and manipulate graphically handling mode.
This step is more important than the previous step, because designer must
make attention when defining handlers. This is evident, because an excep-
tion that is not handled correctly or efficiently will cause software failure.

UML extension and proposed stereotypes for sequence diagrams
to express handlers

Handler stereotype This stereotype extends the meta class Behav-
ior Execution Specification. Therefore it is defined to be applied to Behavior
Execution Specification. Its application to a Behavior Execution Specifica-
tion indicates the starting of handling an occurred exception. In the se-

23

www.manaraa.com

quence diagram, exceptions are represented by an exceptional reply as we
saw above. This reply is received by The invoker that called the method
which raised the exception. It is evidently so, to put the handler in the life
line that represents the invoker. With this stereotype, the designer could
define handlers early, easily and graphically without any dependency to pro-
gramming languages. This extension allows also maintaining softwares code
easily, because if any changes of exception handling system are needed, they
will be done directly from the sequence diagram, and then they will be re-
flected directly to the generated code. In order to show how to represent
graphically a handler in the sequence diagram, we have so presented again
the example of the printer(see figure.17) in order to show how to express a
handler by graphic notation.

Figure 14: Use of Handler Stereotype

Handling an exception may be done in different modes which can be :

24

www.manaraa.com

• Termination,

• Resume,

• Retry,

• Propagation,

• ReturnValue,

• AbortAll.

We consider these modes as constraints that will force the designer to respect
them. These constraints will be tested specially in the generation code
task when the designer or the developer chooses the target programming
language. For example, suppose that developer chooses the resume mode
when defining one or more handlers and then he chooses JAVA as target
programming language, there will be an exception saying that the chosen
programming language does not support resumption model [20], so you have
to change the chosen handling mode or the target language programming.
In order to satisfy these handling modes we have proposed five stereotypes
as extensions to UML. In the following, we explain how we have done these
extensions and which UML meta classes we have extended.

Termination stereotype This stereotype extends the meta class Mes-
sage(see figure.9). It indicates the excecution termination of the protected
block in which the exception has occured. This extension to UML allows
to the designer assigning the termination mode of an exception handling.
It permits showing explicitly and graphically that a given handler will ex-
press termination handling mode. When developing dependent systems the
graphic notation that indicates that a handler will cause software execution
termination will be under discussion between designers and stakeholders to
predict early if termination is useful or harmful.
To more understand this point let us take an example, suppose that we are
filling a web application that contains 5 tasks, and in the final task there is
an exception raising, in this case if the developer of the application made the
termination mode to handle this exception we will loose all the informations
which we have filled in the four first tasks. But if this case was studied early
such as in the sequence diagram, designers will easily find the wrong way of
handling such exception by distinguishing easily the graphic notation of the
termination mode.
Its graphic notation is shown in figure.15. Termination mode represents a
feature of many programming languages. This feature is implemented by
the programming languages developers and it is not never clear and explicit
to a programming language user. It was been always behind a black box
code that is specific for company or persons who developed the programming

25

www.manaraa.com

language. And that is why we want to make this handling mode graphic and
explicit. We see that giving the designer opportunity to express termination
in the sequence diagram is very useful, because with a graphic notation the
designer will easily manipulate this handling mode without any dependency
to programming languages features. Let us see a simple example that shows
the usefulness of Termination stereotype and its graphic notation(see fig-
ure.16): a client can request an amount from a bank cash machine. This
last one can reply with a normal response (receivedAmount), or an excep-
tional response (BadCredit exception). With termination mode execution
will be returned in the next method which is out of the protected block. In
this case, execution will start with seeBalance method invocation.

Figure 15: Graphic notation of Termination stereotype

In order to understand the interest of our approach and the usefulness of
the proposed stereotypes, we will present with each handling mode a pseudo
code that is supposed to be generated. Most of the presented pseudo codes
are written with JAVA language. The only one which is not written with
JAVA is the one that describes the resume mode (see listing.2) and which
is written with SmallTalk, because JAVA does not support resume handling
mode. The matching between the handling mode and the target program-
ming language features will be considered as a constraint that will verify
the conformance between the handling mode and the chosen programming
language.
The pseudo code seen in the Listing.1 describes the termination handling
mode shown in the figure.16 and how exceptions and handlers will be placed
in the right try/catch blocs.

26

www.manaraa.com

Figure 16: Application of termination handling mode

Resume stereotype This stereotype extends the meta class Mes-
sage(see figure.9). Even programming languages that support resume mode
have already its specific implementation that allows saving the point from
which the exception was raised, but we have added this graphic notation in
order to indicate exception handling mode of re-putting the system in the
raising context again.
Its graphic notation is shown in figure.17. In order to explain the use of this
stereotype and its graphic representation we have make a small sequence
diagram that represents some interactions between a printer and a user.
Those interactions can raise an exception named NotEnoughPaper which
can be raised with PrintRequest method invocation. If this is supposed to
happen the designer must put a box handler in the lifeline representing the
user, then he must put the arrow representing the resume mode. Its base
must be put in the box handler and its head must be put exactly in the place
where the exception has been raised(see figure.19). With this notation the
designer could easily express explicitly and graphically the resume mode of
exception handling.

27

www.manaraa.com

Listing 1: Termination handling mode
1
2 Class DAB{
3
4
5
6 public void getAmount (int amount) throws BadCreditException { } }
7
8 Class C l i en t {
9

10 DAB d = new DAB() ;
11 public void withdrawmoney (amount){
12 try{ d . getAmount (amount) ; }
13 catch (BadCreditException e){ System . out . p r i n t l n (e . getMessage ()) ; }
14 this . seeBalance () ;
15 }
16 }

Figure 17: Graphic notation of Resume stereotype

The pseudo code seen in the Listing.2 describes the resume handling
mode shown in the figure.17. This code is written with Smaltalk in order to
show the resume handling mode that is specified in the sequence diagram
shown in the figure.17.

Retry stereotype This stereotype extends the meta class Message(see
figure.9). It represents the retry mode of exception handling. It allows the
designer to express graphically that a given handler obliges a software user

28

www.manaraa.com

Figure 18: Application of resume handling mode

to modify some parameters after the occurrence of an exception and then
re-execute the software.

This is very important in dependant systems, because in some urgent
situations the system must be included in an interactive mode with the user
after an exception was occurred in order to be re-executed with new correc-
tive parameters.
Its graphic notation is shown in figure.19. To express the retry mode the
designer must put the base of the arrow representing the retry mode and
put its head in the place from which the message was sent to invoke the
method that raised the exception. To clarify this idea let us take a look to
the travel agency application (see figure.20.). As you see in this figure.20,
a client enter a bank card code to book for a travel, he will receive either
a normal response or an exceptional response. In this last case(Incorrect-
code), the chosen handling mode retry will allow the client to enter the right
code and then re-execute the method EnterCode(code).

29

www.manaraa.com

Listing 2: The resume handling mode
1
2 Object subc l a s s : #Pr in t e r
3
4
5
6 Pr in t e r >> pr in t
7
8 Object subc l a s s : #User
9

10
11 User >> PrintRequest
12 [Pr in t e r p r i n t]
13 with : NotEnoughPaper
14 do : [: e | show : ‘ ‘ put paper ’ ’ e resume]

Figure 19: Graphic notation of Retry stereotype

The pseudo code seen in the Listing.3 represents the code that is is sup-
posed to be generated and shows the retry handling mode specified in the
sequence diagram shown in the figure.20.

SignalException Sometimes a handler is defined just to signal the
same exception which has to handle or a new exception. This functionality is
offered by all programming languages that support exception handling sys-
tem. Every language express signaling exception by its own key word(like
throw in JAVA, signal in Smalltalk...etc). Its graphic notation is the same
as the one that express an exception in a sequence diagram(see figure.13).
Let us understand how to express re-signaling an exception by a handler

30

www.manaraa.com

Figure 20: Application of retry handling mode

by looking again to the travel agency example. As you see in the figure.21,
the provider can signal a BadParameterException, if so the the handler de-
fined in the Broker will signal a new exception(NoAirportDestination) to
the client which must also handle this exception. This example shows the
importance of expressing exception propagation graphically, because the de-
signer can control the flows of exceptions easily. In addition the sequence
diagram gives a clear idea about the progressing of method invocations, and
this helps the designer to understand easily the flows of exceptions if there
are successive methods invocations accompanied by many raised exceptions.

The pseudo code seen in the Listing.4 presents how the propagation han-
dling mode specified in the sequence diagram shown by the figure.21 looks
like.

ReturnValue stereotype As an exception could be handled by re-
turning a value to the invoker of the method that raises the exception we
have defined the stereotype � Returnvalue � in order to allow to the de-
signer expressing this handling mode and finding a graphic notation which

31

www.manaraa.com

Listing 3: The retry handling mode
1
2 Class Broker{
3
4
5
6 public void enterCode (int code) throws IncorrectCodeExcept ion { . . } }
7
8 Class C l i en t {
9

10 Broker b = new Broker () ;
11 public void pay (int cardcode){
12 boolean accepted = fa l se ;
13 while (! accepted){
14 try{ b . enterCode (cardCode) ;
15 accepted = true ;}
16 catch (IncorrectCodeExcept ion e){
17 System . out . p r i n t l n (” Inva l i d code , r e t r y again with the r i g h t card code”) ; }
18 } }
19 }

Listing 4: The resignaling handling mode
1
2
3
4
5 Class Provider {
6
7
8
9 public void l ookForDest inat ion (S t r ing d e s t i n a t i on) throws BadParameterException { . . } }

10
11 Class Broker{
12
13 Provider p = new Provider () ;
14 public void f i ndDe s t i na t i on (s e l e c t e d d e s t i n a t i o n) throws NoAirportDest inat ion {
15
16 try{ p . lookForDest inat ion (s e l e c t e d d e s t i n a t i o n) ; }
17 catch (BadParameterException e){ throw new NoAirportDest inat ion ;}
18 } }

32

www.manaraa.com

Figure 21: Application of resignaling handling mode

could be manipulated easily. When using a message stereotyped by � Re-
turnvalue � the designer has to enter as parameter a value.
Its graphic notation is shown in figure22. The figure.23 shows a standard
example of interactions between a client and a bank cash machine suppos-
ing here that the client could be classified in a bad list of clients who have
bad history with their bank. If this is the case we see in figure.23 how we
could express the return value handling mode. In the example shown in this
figure, we see that the handler put to handle the ClientinbadList exception
swallows the bank card and return a string value to the client. This example
shows how with a simple arrow the designer can easily express return value
in exception handling.

33

www.manaraa.com

Figure 22: Graphic notation of ReturnValue stereotype

Figure 23: Application of return handling mode

34

www.manaraa.com

Listing 5: The returnValue handling mode
1
2
3
4
5 Class Bankcenter{
6
7
8
9 public void ver i fyCode (int code) throws Cl i en t i nBad l i s tExcep t i on { } }

10
11 Class DAB{
12
13 Bankcenter b = new Bankcenter () ;
14 public void Ident i fyPinCode (rece ivedCode) {
15 St r ing va l = ‘ ‘ BadClient ’ ’ ;
16 try{ b . ver i fyCode (rece ivedCode) ; }
17 catch (C l i en t i nBad l i s tExcep t i on e){ this . swal lowcard () ; return va l ;}
18 } }

The pseudo code seen in the Listing.5 presents the return handling mode
shown in the figure.23. This handling mode is expressed in the try/catch
bloc included in this code portion.

AbortAll stereotype Because exception handling can cause soft-
ware execution stop we have defined this stereotype in order to express abort
all handling mode. With the notation shown in the figure.24, the designer
can directly put the shown square in the bottom of the box representing the
handler to say that such handler will make exit to the system.
The figure.25, represents the sequence diagram that describes the interac-
tions of payment between a client and a broker in the travel agency appli-
cation. We have already used this example to show the usefulness of retry
handling mode. But here, we use it to express the abort all handling mode.
After three times of IncorrectCode exception occurrence, the handler must
abort all because it predicts that the client try to hacker the system.

Figure 24: Graphic notation of AbortAll stereotype

35

www.manaraa.com

Figure 25: Application of abortAll handling mode

The pseudo code seen in the Listing.6 demonstrates how expressing in
the software code the specified AbortALL handling mode made in the se-
quence diagram.

We think that adding this new specification to UML will be interesting,
because designers will not behave with handlers as a piece of code that is
specific for a programming language feature any more , but they will behave
with handlers as a concrete graph with a high level of flexibility and explic-
itness .

4.2.5 Step5: defining class diagram

In this step, the designer is demanded to define class diagram in order to
describe the static part of the software. In order to facilitate this task, we
propose to generate the class diagram from the sequence diagrams. We have
not proposed any extension to UML that allows expressing exception han-
dling graphically in the class diagram. But we find that this step is necessary
because it represents an intermediary passage from sequence diagram to the
software code. In addition, in this step we can associate each class operation

36

www.manaraa.com

Listing 6: The abortAll handling mode
1
2
3
4
5 Class Broker{
6
7
8
9 public void enterCode (int code) throws IncorrectCodeExcept ion { } }

10
11 Class C l i en t {
12
13 int i = 0 ;
14 Broker b = new Broker () ;
15 public void pay (int cardcode){
16 boolean accepted = fa l se ;
17 while (! accepted){
18 i = i + 1 ;
19 try{ b . enterCode (cardCode) ;
20 accepted = true ;}
21 catch (IncorrectCodeExcept ion e){
22 System . out . p r i n t l n (” Inva l i d code , r e t r y again with the r i g h t card code”) ;
23 i f (i == 3){ System . e x i t () ; } }
24
25 } }
26 }

37

www.manaraa.com

to the exceptions that it could raise.

4.2.6 Step6: Implementing code

In this step, the developer should implement the software code and put
exceptions and handlers in the right try/catch blocks. To facilitate this
task, we propose to generate the software code skeleton. This code skeleton
will contains both exceptions and handlers. There will be try/catch blocks
which contains the exceptions and handlers defined in the early phases of
the software life cycle. The generated code will conforms to the chosen pro-
gramming language.

We have explained in this section the proceeding of our approach that
allows the designer to express exception handling in the software life cycle.
Our approach offers to the designer the opportunity to manipulate exception
handling graphically in order to help him verifying the software reliability
easily.

38

www.manaraa.com

5 Implementation of the Proposed approach

In order to implement our approach we were based on model driven engi-
neering to manipulate all the UML models and diagrams which we have
used and the new extensions which we have done to UML. To increase the
benefits of our approach, we have proposed a tool that facilitates software
development by automating its most important phases. This tool looks also
after moving Exception Handling defined in the first phase of software life
cycle to the next phases until arriving to implementation phase automati-
cally.

We have used the development environment Eclipse Kermeta in order
to implement our approach and the Eclipse UML2 plugin to edit and view
all the UML diagrams that we needed. The subsection 5.1 introduces the
Model driven engineering. Subsection 5.2 presents an overview about ker-
meta language, subsection 5.3 describes the eclipse UML2 plugin and the
last subsection of this section analyses the architecture of the proposed tool
in addition to the most important transformations and their implementa-
tions with kermeta.

5.1 Model-driven engineering

According to [17] Model-driven engineering (MDE) is a software develop-
ment methodology which focuses on creating models, or abstractions, more
close to some particular domain concepts rather than computing (or algo-
rithmic) concepts. It is meant to increase productivity by maximizing com-
patibility between systems, simplifying the process of design, and promoting
communication between individuals and teams working on the system.
A modeling paradigm for MDE is considered effective if its models make
sense from the point of view of the user and can serve as a basis for imple-
menting systems. The models are developed through extensive communica-
tion among product managers, designers, and members of the development
team. As the models approach completion, they enable the development of
software and systems.
As it pertains to software development, model-driven engineering refers to a
range of development approaches that are based on the use of software mod-
eling as a primary form of expression. Sometimes models are constructed to
a certain level of detail, and then code is written by hand in a separate step.
Sometimes complete models are built including executable actions. Code
can be generated from the models, ranging from system skeletons to com-
plete, deployable products. With the introduction of the Unified Modeling
Language (UML), MDE has become very popular today with a wide body
of practitioners and supporting tools. More advanced types of MDE have

39

www.manaraa.com

expanded to permit industry standards which allow for consistent applica-
tion and results. The continued evolution of MDE has added an increased
focus on architecture and automation.

5.2 Used Tools

Kermeta workbench is a powerful metaprogramming environment based on
an object-oriented DSL (Domain Specific Language) optimized for meta-
model engineering.

5.2.1 Kermeta

According to [18] Kermeta is a metamodeling language which allows describ-
ing both the structure and the behavior of models. It has been designed to
be fully compliant with the OMG metamodeling language EMOF (part of
the MOF 2.0 specification) and provides an action language for specifying
the behavior of models.
Kermeta is intended to be used as the core language of a model oriented
platform. It has been designed to be a common basis to implement Meta-
data languages, action languages, constraint languages or transformation
language. Kermeta has many features such as:

• Model oriented : Model elements are the key concepts of the language,
manipulate them as easily as Objects in your favorite Object Oriented
language.

• Aspect oriented : It allows to weave elements coming from various
sources (ecore, kermeta, OCL, ...) in order to build various tools on top
of existing (legacy) metamodels. Place your operations and features
directly in the metaclasses for clean and innovative designs.

• Strongly typed : It supports generics, lambda expression (build your
own ”foreach” on any element you wish) and a convenient Model type.
Common errors are reported early in the development process.

• Design by contract : this helps to build reliable tools.

• Object Oriented core : If the above features aren’t enough for a good
design, then simply reuse the popular know how and design pattern
available with Object Oriented Programming. This ensures a good
scalability

40

www.manaraa.com

5.2.2 Eclipse UML2 plugin

According to [19] UML2 is an EMF-based implementation of the Unified
Modeling Language (UMLTM) 2.x OMG metamodel for the Eclipse plat-
form.
The objectives of the UML2 component are to provide:

• a useable implementation of the UML metamodel to support the de-
velopment of modeling tools

• a common XMI schema to facilitate interchange of semantic models

• test cases as a means of validating the specification

• validation rules as a means of defining and enforcing levels of compli-
ance

• Object Oriented core : If the above features aren’t enough for a good
design, then simply reuse the popular know how and design pattern
available with Object Oriented Programming. This ensures a good
scalability

UML2 Tools is a set of GMF-based editors for viewing and editing UML
models; it is focused on (eventual) automatic generation of editors for all
UML diagram types.

5.3 The Tool’s Architecture

Before describing the proposed tool, you should note that the stereotypes
we have defined could be applied directly by the Eclipse UML plugin. This
could be done after defining the profile and saving it. Stereotypes are just
defined by creating extensions to the needed meta classes, then, we can ap-
ply them to UML diagrams. The tool we propose consists of three main
tasks(see figure.26). The first one consists on generating suitable sequence
diagrams for each use case, the second one consists on generating the class
diagram from sequence diagram and the final one consists on code genera-
tion. With each task there will be a kind of migration made by the exception
handling system from one phase to an other. So, each time there is a genera-
tion the exception handling specified in each phase will move automatically
to the next phase. In the following we will analyze each task separately
in order to get a clear idea about each one and about the transformations
made for passing from one diagram to an other. We will also explain in each
task the exception handling aspect that characterizes it in order to keep our
target context that looks after exception handling in software life cycle.
The implementation of the transformations will be given each time we ex-
plain a task.

41

www.manaraa.com

Figure 26: Main tasks of our proposed tool

Task.1 : Generating sequece diagrams skeletons

Input: Use case diagram based on the proposed profile

output : Sequence diagrams skeletons

Description The use case diagram used as an input is to be defined by
the designer. He must apply to it the profile described above. That means
that he has to apply the defined stereotypes that can be applied to the use
case diagram such as �WithExceptions� and �AssociatedExceptions�
that are to be applied respectively to use cases which interactions can raise
exceptions and to comments which annotate those use cases.
Our tool will produce one sequence diagram skeleton for each use case. Then
the designer is asked to add messages, interactions and the right lifelines(see
figure.27). He can also add other sequence diagrams in order to satisfy the
needed requirements. In this task, each exception contained in a comment
stereotyped by �AssociatedExceptions� in the use case diagram will be
mapped to a comment stereotyped by �Exception� in the sequence dia-
gram. This subtask is done automatically. The developer must represent in

42

www.manaraa.com

the sequence diagram each exception by a reply in the right place of raising
context of the exception.
The proceeding of this task as shown by is divided into four subtasks(see
figure.27):

1. In this subtask there will be automatic generation of empty sequence
diagrams. We will have for each use case a sequence diagram that will
take its name.
Each comment stereotyped by �AssociatedExceptions� in the use
case diagram will be dissociated to be replaced in the sequence dia-
gram by many comments stereotyped by �Exception� and each one
represents the name of an exception.

2. In this subtask, the designer is asked to make the needed refinements
such as life lines, messages ...etc. But the most important thing is
placing exceptional replies in the right place. Then he must rename
each exceptional reply by the right exception name. Finally, he has to
define a handler to each exception according to the Handler specifica-
tions we have presented in subsection4.4.

3. In this subtask, our tool will mark automatically the exceptional replies
by comments stereotyped by �Exception�. This allows the designer
distinguishing between normal replies and exceptional replies. It facili-
tates also the transformation to the class diagram because our tool will
create for each exceptional reply in the sequence diagram an exception
class and put it in a package which contains all exception classes.

4. In this subtask, the designer has to define the right handler for each
exception according to our proposed handler specification.

Implementation To realize this task we have implemented with ker-
meta an Operation that gets as inputs two UML models. The first one is
the source that represents the use case diagram augmented with our pro-
posed extensions. The second one represents the model that will receive the
informations representing the sequence diagrams skeletons. The last UML
model will receive also the set of exceptions associated to exceptional uses
cases . The kermeta operation we are talking about, will transform each
use case to a sequence diagram skeleton and it will transform each comment
stereotyped with AssociatedExceptions to a set of comments stereotyped by
Exception. Each of these comments will receive an exception name and will
be included to the right sequence diagram skeleton.

43

www.manaraa.com

The following code portion represents the kermeta operation that is re-
sponsible for the first transformation. We mean here the transformation
from use case diagram to sequence diagram.

Listing 7: Transformation.kmt(transformation from a use case diagram to
sequence diagrams skeletons)

1 operat i on transformerUscToSeq (SourceModel : Model , TargetModel : Model) : Void i s do
2 var p : Package
3 var c : Co l l abora t i on
4 var i : I n t e r a c t i o n
5 var comment : Comment i n i t Comment .new
6 comment . body := ””
7 var s : S t r ing i n i t ””
8 var Setcomment : s e t Comment [0 . . ∗] i n i t kermeta : : standard : : Set<Comment>.new
9 getAllUCases2 (usc . asType (Package)) . each{ uc |

10 p := Package .new p . name := uc . name
11 c := Co l l abora t i on .new c . name := p . name+” Co l l abora t i on ”
12 i := In t e r a c t i o n .new i . name := ”sd”+p . name
13 getAllComment (usc . asType (Package)) . each{com |
14 com . annotatedElement . each{ e l t |
15 i f e l t . asType (UseCase) == uc
16 then from var j : I n t eg e r
17 i n i t 0 un t i l j == com . body . s i z e () loop
18 i f com . body . elementAt (j) . t oS t r i ng () == ”>”
19 then from var k : In t eg e r i n i t j + 2 un t i l k == com . body . s i z e ()
20 loop s := s+com . body . elementAt (k) . t oS t r i ng ()
21 i f com . body . elementAt (k+1). t oS t r i ng () == ”/”
22 then comment := Comment .new comment . body := ”<<Exception>>”+s
23 i f not i . ownedComment . e x i s t s {c | c . body == comment . body }
24 then i . ownedComment . add (comment) end s :=”” k := k + 1 end k:= k + 1 end

end
25 j := j + 1 end
26 end } i . ownedComment . add (com) } c . ownedBehavior . add (i)
27 p . packagedElement . add (c) TargetModel . packagedElement . add (p) }
28
29 end

44

www.manaraa.com

Figure 27: Main subtasks of task.1

Task.2 : Generating Class diagram

Input: Sequence diagrams

output : Class diagram

Description In this task, the tool will generate a class diagram from
sequence diagrams defined in the previous task. This task is divided into
tow subtasks(see figure.28) :

1. In this subtask there will be automatic generation of a class dia-
gram that describes the static side of the application. There will be
also automatic generation of different operations in the right classes
and the associations between classes. Each comment stereotyped by
�Exception� will be replaced in the class diagram by a class that
takes the name of the exception.
The classes representing exceptions will be put in a separate package
which name is ExceptionalPackage.

2. In this subtask, each operation will be matched automatically with
the raised exceptions which it can raises.

45

www.manaraa.com

Figure 28: Main subtasks of task.2

46

www.manaraa.com

Implementation We have implemented the transformation from se-
quence diagrams to a class diagram with a Kermeta Operation that takes as
input a set of sequences diagrams saved as a UML model and a UML model
that will save the generated class diagram. Each life line in a sequence
diagram will be transformed to a class. The operation will delete the re-
dundant classes, because the set of the sequences diagram may contain life
lines with the same name. Each message will be transformed to a method
which be placed in the right class (you should note here that the life line
that will receive the message will guide the tool to place methods in their
right owners). Each exception in the sequence diagram will be transformed
to an exception class in the target UML model.

The following code portion represents the kermeta operation that is respon-
sible for the second transformation (The transformation from sequences
diagrams to a class diagram).

Listing 8: Transformation.kmt(Class diagram generation)
1 operat i on generateClassDiagram (Msource : Model , Mcible : Model) : Void i s do
2 var c : Class
3 var o : Operation
4 var Excl : Class
5 var pacExceptions : Package i n i t Package .new
6 var InterMessages : seq Message [0 . . ∗] i n i t kermeta : : standard : : Sequence<Message >.new
7 var AnnotedElements : Element [0 . . ∗] i n i t kermeta : : standard : : OrderedSet<Element >.new
8 pacExceptions . name := ”MyExceptions”
9

10 getAl lPackage (Msource) . each{p |
11 g e tA l l L i f eL i n e s (p) . each{ l | c := Class .new c . name := l . name
12 g e tA l l I n t e r a c t i o n s (p) . each{ i | i . ownedComment . each{com |
13 com . annotatedElement . each{ ae | AnnotedElements . add (ae) }
14 Excl := Class .new Excl . name := com . body
15 i f not pacExceptions . packagedElement . e x i s t s {pac |
16 pac . name == Excl . name } then pacExceptions . packagedElement . add (Excl) end}
17 InterMessages := i . message . s e l e c t {m | m. rece iveEvent != void }
18 InterMessages . each{ im |
19 o := Operation .new o . name := im . name
20 im . rece iveEvent . asType (MessageOccur renceSpec i f i ca t i on) . covered . each{ l f |
21 i f (l f == l) and (not AnnotedElements . e x i s t s { a e l t |
22 a e l t . asType (Message) . name == o . name })
23 then c . ownedOperation . add (o) end } }}
24 i f not g e tA l lC l a s s e s (Mcible) . e x i s t s { c l a s s e | c l a s s e . name == c . name}
25 then Mcible . packagedElement . add (c) end } }
26 Mcible . packagedElement . add (pacExceptions)
27 saveModel (Mcible , ” p lat form :/ r e sou r c e /Stage2 /model/SAGECLcible . uml”)
28 genererAssoc (Msource , Mcible)
29 saveModel (Mcible , ” p lat form :/ r e sou r c e /Stage2 /model/SAGECLcible . uml”)
30
31 end

47

www.manaraa.com

As we did not make any additional extension to UML to describe ex-
ception handling graphically in the class diagram, we were based just on
what UML proposes. The exceptions will be automatically associated to
the raising contexts. So, each exception will be associated to the operation
that could raise this exception.
We are planning to look for future extensions to UML to give designers the
possibility of designing exception handling explicitly in the class diagram.

Task.3 : Generating Code

Input: Class diagram

output : JAVA Code

Description This task represents the final task and it is considered
the most important one because with it we could evaluate the efficiency of
our tool. It is considered also as the productive task. The developer will
receive after the running of this task the code of the application that has
been specified in the early phases of software life cycle. The output of this
task is a code that contains all classes and operations skeletons with the
whole exception handling system specified previously put in the right places
.
The code generated will be produced according to the chosen programming
language. In this task, we will see explicitly the exceptions and their handlers
put in the right places. Exception handling will respect the target program-
ming language features and its syntaxe. Syntacticly, exception handling sys-
tem will be automatically generated according to the target programming
language feature such as try..catch in JAVA , with : do : in SmallTalk....etc.
In addition exception handling system specified by the designer in the early
phases will be tested in this task by our tool according to the target pro-
gramming language features. For the moment we can only generate JAVA
code, but we plan to aim other programming languages.

Implementation To generate code we have defined a Kermeta Op-
eration that takes as an input a class diagram and then generate the code
skeleton. This code skeleton will contains class definition, methods bodies
the exceptions associated to their raised methods and the try/catch blocs. In
addition, the code skeleton will contains the definition of exceptions classes
which are inherited from the class Exception of JAVA. The handlers are
to be made by the developers here, because we have not implemented the
handler specifications seen in the subsection 4.5 yet. But this is considered
as a work in progress which could be continued as a future work.

48

www.manaraa.com

The following code portion represents the kermeta operation that generates
the code skeleton with the specified exceptions from a class diagram.

Listing 9: Transformation.kmt(Code Generation)
1 operat i on generateCode (c lassDiagram : Model , TargetLanguage : S t r ing) : Void i s do
2 var h : S t r ing
3 var opr : S t r ing
4 var ch : Character
5 var a f f : S t r ing
6 var s : S t r ing i n i t ””
7 var m : St r ing
8 var t : S t r ing
9 var c : S t r ing

10
11 i f TargetLanguage == ”Java” then t := ” try ” and c := ” catch ” end
12 classDiagram . each .{ c | c . ownedOperation . each{op |
13 i f op . ra i s edExcept ion . s i z e () != 0
14 then from var i : I n t eg e r
15 i n i t 0 un t i l i == op . ra i s edExcept ion . one . name . s i z e ()
16 loop s := s+op . ra i s edExcept ion . one . name . elementAt (i) . t oS t r i ng ()
17 i f s ==”<<Exception>>”
18 then s := ”” from var j : I n t eg e r
19 i n i t i+1 un t i l j == op . ra i s edExcept ion . one . name . s i z e ()
20 loop s := s+op . ra i s edExcept ion . one . name . elementAt (j) . t oS t r i ng () j := j +1 end
21 op . ra i s edExcept ion . one . name := s end i := i +1 end end }
22 s t d i o . w r i t e l n (”//−−−−−−−−−−−−−−−−−−−−Class s k e l e t on o f ”+c1 . name)
23 s t d i o . w r i t e l n (””)
24 s t d i o . w r i t e l n (””)
25 s t d i o . w r i t e l n (” pub l i c Class ”+c1 . name+” {”) s t d i o . w r i t e l n (””)
26 s t d i o . w r i t e l n (””)
27 s t d i o . w r i t e l n (””)
28 c . ownedAttribute . each{ at t | s t d i o . w r i t e l n (a t t . name+” ”+att . name+” ; ”)
29 s t d i o . w r i t e l n (””) s t d i o . w r i t e l n (””)}
30 s t d i o . wr i t e (” pub l i c ”+c1 . name+” (”) c1 . ownedAttribute . each{ at t |
31 s t d i o . wr i t e (a t t . name+” ”+att . name+” , ”)}
32 s t d i o . w r i t e l n (”){ ”) c1 . ownedAttribute . each{ at t |
33 s t d i o . w r i t e l n (” t h i s . ”+at t . name+” := ”+att . name+” ; ”) }
34 s t d i o . w r i t e l n (”// TO DO // }”)
35 s t d i o . w r i t e l n (””)
36 s t d i o . w r i t e l n (””)
37 c . ownedOperation . each{op |
38 i f op . ra i s edExcept ion . s i z e () != 0
39 then s t d i o . w r i t e l n (” pub l i c void ”+op . name+” () {”)
40
41
42 s t d i o . w r i t e l n (”{”+t+” { // To DO //}”)
43 s t d i o . w r i t e l n (”// ! ”)
44 s t d i o . w r i t e l n (”// ! ! ”)
45 s t d i o . w r i t e l n (”// ! ! ”)
46 s t d i o . w r i t e l n (”// ! ! ”)
47 s t d i o . w r i t e l n (” // ! Exception ! ”)
48 s t d i o . w r i t e l n (” // ! L o c a l i s a t i o n ! ”)
49 s t d i o . w r i t e l n (” / / ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ”)

49

www.manaraa.com

50 s t d i o . w r i t e l n (””)
51 s t d i o . w r i t e l n (””)
52 s t d i o . w r i t e l n (c+” (”+op . ra i s edExcept ion . one . name+” e){// TO DO // } }”)
53 s t d i o . w r i t e l n (””)
54 s t d i o . w r i t e l n (””)
55 s t d i o . w r i t e l n (””)
56
57 else s t d i o . w r i t e l n (” pub l i c void ”+op . name+” (){// TO DO //} }”)
58 s t d i o . w r i t e l n (””)
59 s t d i o . w r i t e l n (””) end }}
60 s t d i o . w r i t e l n (””)
61 s t d i o . w r i t e l n (””)
62
63 end

In this section we presented The tasks done by our proposed tool. Even
we have implemented most of the transformations cited above, the imple-
mentation of handlers specifications is in progress.

50

www.manaraa.com

6 Conclusion and perspectives

We have performed in this work some extensions to UML in order to give
opportunity to designers to deal with exception handling in the early phases
of software life cycle. We have done our proposed extensions according to a
defined profile that extends UML in order to introduce exception handling
concepts, notations and terminology in UML diagrams. This feature does
not exist in standard UML. Extensions we have done have been applied to
use case and sequence diagrams. These extensions are translated to graph-
ical notations that make sense for designers. Designers have looked always
after making standard use case diagram and defining standard interactions
or sequence diagram, then the developer will look after exception handling in
the last phase of software life cycle. Even developer could sometimes extract
all exceptions and define their handlers efficiently, but this is dependent on
the kind of the software that he implements. In large size applications where
developer is found under pressure because of a huge number of code lines,
he could forget discovering some exceptions or defining some handlers. Our
approach push the designer to avoid these mistakes, because the difficulty
of making a reliable software will be divided between designers and devel-
opers and dissociated along the software life cycle.This gives possibilities of
software reliability verification in each phase.
With the extensions we have done, use case and sequence diagram will be
enriched by exception handling notations, a thing that provides explicitness
of exception handling which was always considered as a strength piece of
code. With our proposed UML extensions, designers and developers can
manipulate and deal with exception handling from the early phases of soft-
ware life cycle and with some level of explicitness and graphic notations.
In addition to our proposed extensions we have implemented our approach
with a tool which help both designers and developers not only to deal with
exception handling in all software life cycle but also to help at generating
sequence diagrams, class diagrams and code.
As perspectives we are planning first to go ahead with our proposed exten-
sions in order to deal with exception handling notation in the class diagram.
As we have mentioned above, we have dealt with exception handling in class
diagram by benefiting from the feature of putting exceptions in the right
raising contexts offered by UML. But, we will focus on extending UML to
support graphic notations of exception handling in class diagrams. This
will allows designers to manipulate graphically exceptions, their raising con-
texts and their handlers in the class diagram. We look also for completing
the implementation of handlers specification made for sequence diagrams.
As a future work, we plan to look for dealing with exception handling in
components.

51

www.manaraa.com

References

[1] Goodenough, J.B.: Exception handling: Issues and a proposed notation.
Communications of the ACM 18(12), 683–696 (1975).

[2] Shui, A., Mustafiz, S., Kienzle, J.: Exceptional use cases.In: Briand,
L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 568–583.
Springer, Heidelberg (2005).

[3] Shui, A., Mustafiz, S., Kienzle, J.: Exception-Aware Requirements
Elicitation with Use Cases. In: Dony, C., Knudsen, J.L., Romanovsky,
A., Tripathi, A.R. (eds.) Advanced Topics in Exception Handling Tech-
niques. LNCS, vol. 4119, pp. 221–242. Springer, Heidelberg (2006).

[4] Mustafiz, S., Sun, X., Kienzle, J., Vangheluwe, H.: Model-Driven As-
sessment of Use Cases for Dependable Systems. In: Nierstrasz, O.,
Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol.
4199, pp. 558–573. Springer, Heidelberg (2006)

[5] Zia, M., Mustafiz, S., Vangheluwe, H., Kienzle, J.: A Modelling and
Simulation Based Process for Dependable Systems Design. In: Software
and Systems Modeling, pp. 437–451 (April 2007).

[6] Romanovsky, A.: On Exceptions, Exception Handling, Requirements
and Software Lifecycle. 2007 IEEE.

[7] Si Alhir, S: Guide to applying the UML, page 350. Springer, 2002 / Si
Alhir, Sinan (2002). Guide to applying the UML. Springer.

[8] Oddleif, Halvorsen., Ragnhild Kobro, Runde., Oystein, Haugen.:Time
Exceptions in Sequence Diagrams MoDELS 2006 Workshops, LNCS
4364, pp. 131–142, 2007. Springer.

[9] Nelio, Cacho., Thomas, Cottenier., Alessandro, Garcia.:Improving Ro-
bustness of Evolving Exceptional Behaviour in Executable Models WEH
’08, November 14, Atlanta, Georgia, USA, 2008. ACM.

[10] OMG. Catalog of OMG Modeling and Metadata Specifications Re-
trieved 2008-03-31.

[11] Rohrig R, Beutefuhr H, Hartmann B, Niczko E, Quinzio B, Junger
A, Hempelmann G.: Summative software evaluation of a therapeutic
guideline assistance system for empiric antimicrobial therapy in ICU.
J Clin Monit Comput 2007; 21:203–210.

[12] Ian, Alexander. Use Cases with Hostile Intent IEEE Software, January
2003.

52

www.manaraa.com

[13] de Lemos, R., Romanovsky, A.: Exception Handling in the Software
Lifecycle. International Journal of Computer Systems Science and En-
gineering, 16 (2). pp. 167-181. ISSN 0267-6192.

[14] Dowson, M.:The Ariane 5 Software Failure. Software Engineering Notes
22 (2): 84. doi:10.1145/251880.251992.

[15] C. M. F. Rubira, R. de Lemos, G. R. M. Ferreira, F.Castor Filho.
Exception handling in the development of dependable component-based
systems.Software – Practice and Experience. 35. 2005.

[16] Miller, R.: What’s New in UML2? Model Exceptions. Embarcadero
Network. http://edn.embarcadero.com/article/30166.

[17] Schmidt, D.C.:Model-Driven Engineering IEEE Computer, 2006.

[18] Franck, C., Zoe, D., Franck, F. (2007). Kermeta Language Overview

[19] Eclipse Foundation (2010). Model Development Tools
http://www.eclipse.org/modeling/mdt/?project=uml2.

[20] Christophe, Dony.: A fully object-oriented exception handling system:
rationale and smalltalk implementation Springer-Verlag New York, Inc.
New York, NY, USA, 2001.

53

